Skip to main content

9 posts tagged with "Theory"

View All Tags

Energy - moment relationship

Stuart Tierney
PhD Student and Research Assistant

Energy and moment are two independent measures of the strength of a seismic event. Their physical meaning and how they are calculated was described in a previous blog post. Analysis of the relationship between the energy and moment of events can provide insight into seismic sources. For example, blasts or ore pass noise, falsely processed as real events, tend to have distinct zones on an energy-moment chart. In general, events with higher-than-average energy are associated with high relative stress.

Moment tensors - a practical guide

Stuart Tierney
PhD Student and Research Assistant

Moment tensor analysis is a topic that carries a decent level of uncertainty and confusion for many people. So I'm going to lay it out as simply as I can. For this post, I'm not going to go into too many details on how moment tensors are actually calculated. But, I'm going to summarise the things I think are most important for geotechnical engineers to know for interpreting moment tensor results.

Moment tensors in General Analysis app

Stuart Tierney
PhD Student and Research Assistant

Moment tensors have been added to the General Analysis application in the recent update. Beach balls and principal axes can be viewed in the General Analysis 3D view. There is also a separate Moment Tensor window with a number of stereonets and mechanism charts. Two new training videos have been uploaded to the General Analysis (3D View) page that walkthrough the new tools.

Hazard Assessment app - excavation view

Stuart Tierney
PhD Student and Research Assistant

The grid-based hazard calculations in the Hazard Assessment app were discussed in a previous post. The Iso View describes the hazard at all locations within the mine but when you are considering the seismic risk for a particular work area, large events and strong ground motions may come from multiple sources. The Excavation View estimates the seismic hazard associated with working areas (minode locations) in a few different ways as described below.

Strong ground motion relationship

Stuart Tierney
PhD Student and Research Assistant

The strong ground motion (SGM) relationship is used to calculate the peak particle velocity (PPV) generated by a seismic event. You may also hear this referred to as a ground motion prediction equation (GMPE), but only the maximum velocity is estimated, i.e. the strong ground motion, rather than the full, complex wave motion.

What on Earth is MUL?

Stuart Tierney
PhD Student and Research Assistant

Yes, this is a frequently asked question.... MULM_{UL} or MUpperLimitM_{Upper-Limit} refers to the truncating magnitude of the Gutenberg-Richter distribution. We used to refer to this as Mmax in the Hazard Assessment app and on the frequency-magnitude chart but we found there was confusion caused by Mmax being used to describe multiple things. Hopefully if we refer to MULM_{UL} or the upper-limit magnitude, this will clear up the terminology a little.